

Towards XUV frequency combs using high power

Yb-based thin-disk oscillators

Oleg Pronin

Helmut Schmidt University (University of Federal Armed Forces)

www. hsu-hh.de/lts

MEPhI 25.10.2019

Preface. Munich \rightarrow Hamburg

MPQ, Garching

Oleg Pronin (HSU, Hamburg)

Preface: DESY <> HSU

Oleg Pronin (HSU, Hamburg)

The team in Hamburg www.hsu-hh.de/lts/

Oleg Pronin (HSU, Hamburg)

Outline

- Introduction (HHG, applications, different methods)
- Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- CEO (CEP) stabilization of thin-disk femtosecond oscillators
- Spectral broadening and pulse compression

Extreme UV (EUV) Generation via HHG

C. M. Heyl, et. al., Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 50, p. 013001, 2017.H. Steffen, et. al, Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 49, p. 172002, 2016.

What is high harmonic generation?

High harmonic generation. Cosine pulse

High harmonic generation. Sine pulse

HELMUT SCHMIDT

M. Hermann et. al., Phys. Rev. A **79**, 052505 (2009)

XUV frequency combs

doi:10.1038/nature10711

Direct frequency comb spectroscopy in the extreme ultraviolet

Only a single comb tooth with 10E-5 of the total power, 10 pW, contributes to the signal.

Arman Cingöz¹*, Dylan C. Yost¹*, Thomas K. Allison¹, Axel Ruehl²†, Martin E. Fermann², Ingmar Hartl² & Jun Ye¹

Outline

- Introduction (HHG, applications, different methods)
- o Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- o CEO (CEP) stabilization of thin-disk femtosecond oscillators
- o Spectral broadening and pulse compression

XUV frequency combs

PHYSICAL REVIEW A 79, 052505 (2009)

Feasibility of coherent xuv spectroscopy on the 1S-2S transition in singly ionized helium

M. Herrmann,¹ M. Haas,² U. D. Jentschura,³ F. Kottmann,⁴ D. Leibfried,⁵ G. Saathoff,¹ C. Gohle,¹ A. Ozawa,¹ V. Batteiger,¹ S. Knünz,¹ N. Kolachevsky,^{1,*} H. A. Schüssler,⁶ T. W. Hänsch,^{1,7} and Th. Udem¹

1S-2S two-photon resonance at 61 nm in He+

Фотоэлектронная спектроскопия с угловым (ARPES) и временным разрешением at MHz rep. rate

A.K. Mills, ... D.J. Jones "Cavity-enhanced high harmonic generation for XUV time-resolved ARPES" <u>https://arxiv.org/abs/1902.05997</u>

XUV frequency combs for nuclear clocks

nuelock

149.7±3.1 nm No direct photon detection yet

B. Seiferle, et. al., "Energy of the 229Th nuclear clock transition," Nature 573, 243–246 (2019).

E. Peik & C. Tamm: Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181 (2003)

150 nm is not so bad!

149.7±3.1 nm

Outline

Introduction (HHG, applications, different methods)

- o Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- o CEO (CEP) stabilization of thin-disk femtosecond oscillators
- o Spectral broadening and pulse compression

□ HHG inside enhacement cavities

https://jila.colorado.edu/yelabs/research/precisionmeasurement-ultrafast-science

A. K. Mills, et.al., "XUV frequency combs via femtosecond enhancement cavities," J. Phys. B: At. Mol. Opt. Phys. 45, 142001 (2012)

□ HHG inside oscillator cavities

F. Labaye, et.al., Opt. Lett., OL 42, 5170 (2017)E. Seres, et.al., Opt. Express, OE 20, 6185 (2012).

Directly laser-amplifier driven HHG

H. Steffen, et. al, Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 49, p. 172002, 2016.

Credit Thomas Allison, https://slideplayer.com/slide/12978818/

Femtosecond enhancement cavity

Finesses of > 1000 with cavity enhancements of several hundred are possible with bandwidth $\Delta\lambda^{\sim}$ 30 nm

Credit Thomas Allison, https://slideplayer.com/slide/12978818/

XUV output coupling/separation

Enhancement cavity is sensitive to low losses

A. K. Mills, et.al., "XUV frequency combs via femtosecond enhancement cavities," J. Phys. B: At. Mol. Opt. Phys. 45, 142001 (2012)

Why not doing it inside oscillator cavity?

VERDI green laser from Coherent

https://www.rp-photonics.com/intracavity_frequency_doubling.html

HHG inside oscillator cavity

E. Seres, et.al., Opt. Express, OE 20, 6185 (2012).

HHG inside oscillator cavity

F. Labaye, et.al., Opt. Lett., OL 42, 5170 (2017)

Directly laser-amplifier driven HHG

Directly laser-amplifier driven HHG

H. Steffen, et. al, Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 49, p. 172002, 2016.

- Generally simple
- Simple XUV output coupling methods
- Relatively efficient XUV output coupling/separation
- Short path-length from XUV generation chamber to target
- Can be compact and transportable
- Low repetition rate <10 MHz</p>
- Relatively low average power 1-2 kW

Outline

o Introduction (HHG, applications, different methods)

- Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- o CEO (CEP) stabilization of thin-disk femtosecond oscillators
- o Spectral broadening and pulse compression

High power Yb-based technologies

Thin-disk technology

TRUMPF

Russbueldt, P., et al., IEEE, 21, 447 (2015)

T. Eidam, et. al., Opt. Lett. 35, 94 (2010)

Femtosecond thin-disk oscillators

Dispersive oscillators Kerr-lens mirrors mode-locking

Thin-disk technology

TRUMPF

- A. Giesen et al., Appl. Phys. B 58, 65, 1994 ;
- B. J. Mende et al., Proc. of SPIE 7193, 71931V-1

Figure 1: Energy levels of Yb³⁺ ions in Yb³⁺:YAG, and the usual pump and laser transitions.

Multi-pass pumping

https://www.rp-photonics.com/thin_disk_lasers.html

Commercial products, up to 16 kW.

LASERPARAMETER	
LASERLEISTUNG AM WERKSTÜCK	16000 W
TYP. LEISTUNGSKONSTANZ BEI NENNLEISTUNG	± 1 % bei aktiver Leistungsregelung
KONTINUIERLICH EINSTELLBARER LEISTUNGSBEREICH	320 W - 16000 W
STRAHLQUALITÄT AN DER EINKOPPLUNG IN DAS LLK	8 mm•mrad
NUMERISCHE APERTUR AN DER AUSKOPPLUNG NACH LLK	0,1
WELLENLÄNGE	1030 nm
MIN. DURCHMESSER LASERLICHTKABEL	200 µm

https://www.trumpf.com/de_INT/produkte/laser/scheibenlaser/

Thin-disk technology

SCALABLE CONCEPT !

Efficient laser medium cooling

Thin disk (0.1 mm), lower total nonlinearity

High average power

High peak powers

H. Fattahi et al., Optica 1, 45, 2014;

- A. Giesen et al., Appl. Phys. B 58, 65, 1994;
- B. J. Mende et al., Proc. of SPIE 7193, 71931V-1

Kerr lens mode-locking

(Magic mode-locking)

D. E. Spence et al., Opt. Lett. 16, 42 (1991)
F. Krausz et al., IEEE J. Quantum Electron . OE-28 , 2097 (1992)
B. Henrich and R. Beigang, Opt. Comm. 135, 300 (1997)

Typical oscillator, 100 W oscillator

M. Seidel, J. Brons, G. Arisholm, K. Fritsch, V. Pervak, and O. Pronin, Scientific reports 7, 1410 (2017).

Oleg Pronin (HSU, Hamburg)

Parameter range (high rep. rate. &low pulse energy)

P _{avg} , W	Ε _p , μJ	f _{rep} , MHz	τ_{p} , fs	P, MW	P _{avg} , W (compressed)	τ _p , fs (compressed)	Application	Status
40	3	13	300	9			Seed oscillator	In use [3]
90	0.9	100	250	3.5	>50	20	MIR generation	In use [4]
42	1.1	38	250	4.2	6 (10)	7.7 (10)	MIR generation	In use [5, 6]
270	14	19	330	37.8			Development itself	Not in use [7]
155	10	15.5	140	63	130	30	XUV generation, Raman spectroscopy	In use [8]
10 (3.5)	0.7 (0.4)	100-200	70 (47)	0.6			Development itself	In use [9]
100	4.1	24	190	19.3	65	30	Commercial system	In use [10]

All oscillators use Yb:YAG as a gain medium. Most of the oscillators are successfully operating in the laboratories with the parameter sets originally published.

Table 1. Summary table of the KLM thin-disk oscillators developed at MPQ, LMU and UFI GmbH from 2012 till 2017.

O. Pronin and J. Brons, "Kerr-Lens Mode-Locked High-Power Thin-Disk Oscillators," in High Power Laser Systems, (InTech, 2018).

Outline

o Introduction (HHG, applications, different methods)

- o Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- CEO (CEP) stabilization of thin-disk femtosecond oscillators
- o Spectral broadening and pulse compression

Frequency comb. Time domain

Carrier envelope phase is constant

http://www.toptica.com/technology/technical-tutorials/frequency-combs/

Frequency comb Frequency standards to optical frequencies f_{ceo} and f_{rep} are usually in 10-100 MHz range Standard comb - frequency and time domain $f_{ceo} = \Delta \phi_{ce'} 2\pi \Delta t$ Modes are separated by f_{rep} Laser spectrum $f_{rep} = f_{ceo} + nf_{rep} \longrightarrow Frequency (Hz)$ Laser modes

http://www.toptica.com/technology/technical-tutorials/frequency-combs/

CEO frequency stabilization

CEO frequency stabilization techniques

AOM in pump beam (Ti:Sa)
 → Not suitable for high power thin-disk oscillators
 Direct pump current control
 → Low control bandwidth (Low-pass filtering)

[1] M. Seidel et al., "Carrier-envelope-phase stabilization via dual wavelength pumping," Opt. Lett. 41, 1853 (2016)
[2] S. Koke et al., "Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise," Nature Photonics 4, 462-465 (2010).

Intra-cavity loss modulation

Intra-cavity loss modulation

O. Pronin et al., "High-power multi-megahertz source of waveform-stabilized few-cycle light," Nat. Commun. **6**, 6988 (2015)

AOM as a Kerr medium

Oscillator layout

Oscillator layout

Noise characteristics

In-loop phase noise -2 100 10 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 10⁻¹¹ 10⁻¹¹ 10⁻¹² 80 < 90 mrad IPN [mrad] 60 10⁻⁸ 40 10⁻¹⁰ 20 10⁻¹¹ 0 10⁰ 10^{1} 10² 10³ 10⁵ 10⁴

frequency [Hz]

Sebastian Gröbmeyer

Outline

- o Introduction (HHG, applications, different methods)
- o Thin-disk Yb:YAG femtosecond oscillators (power, energy)
- o CEO (CEP) stabilization of thin-disk femtosecond oscillators
- Spectral broadening and pulse compression

Short pulses are good for EUV and IR generation

Oleg Pronin (HSU, Hamburg)

Spectral broadening Self phase modulation

$$\phi(t)=\omega_0t-kz=\omega_0t-rac{2\pi}{\lambda_0}\cdot n(I)L$$

$$\omega(t)=rac{d\phi(t)}{dt}=\omega_0-rac{2\pi L}{\lambda_0}rac{dn(I)}{dt},$$

$$n(I) = n_0 + n_2 \cdot I$$

Oleg Pronin (HSU, Hamburg)

Different methods

O. Pronin, et al., Nature Commun 6, 6988 (2015)

K.F. Mak et al. Opt. Lett. 40, 1238 (2015) In bulk crystals (multi-pass)

New method

Developed by ILT Aachen (Germany)

Oleg Pronin (HSU, Hamburg)

Spectral broadening in multi-pass cell

S. N. Vlasov, E. V. Koposova, and V. E. Yashin, Quantum Electron. 42, 989–995 (2012).

Schulte, et al., Optics Letters., 41, 4511 (2016)

K. Fritsch, et al., Optics Letters., accepted (2018)

M. Ueffing, et al., Optics Letters, vol. 43, 2070 (2018)

L. Lavenu et al., "Nonlinear pulse compression based on a gas-filled multipass cell," Opt. Lett. 43, 2252 (2018). Courtesy Kilian Fritsch

Oleg Pronin (HSU, Hamburg)

Spectral broadening at high peak powers

- Herriott-type multi-pass geometry provides:
 - easy access to dispersion engineering (gas, bulk material or mirror dispersion)
 - peak and average power scalability
 - robustness and simplicity
 - (compared to photonic crystal fibers)

Basic Broadening Principle

Linear Dispersion

Net Zero Dispersion Regime

Result: 70 W, 2.6 µJ, 16 fs, 28 MHz

K. Fritsch, et al., Optics Lett., 43, 4643 (2018)

- Two-stages efficiency 70 %
- Peak and average power scalable
- o Pulse compression down to 15 fs

Summary

□ Compact, simple and powerful thin-disk oscillators almost ready to go for EUV frequency combs

CEO stable thin-disk oscillators

Spectral broadening and pulse compression in multi-pass cells

cooling

water

Yb:YAG disk

heat

flow

HR

diamond

Oleg Pronin (HSU, Hamburg)